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a b s t r a c t

Non-negative matrix approximation (NNMA) has been used in diverse scientific fields, but it still has
some major limitations. In the present study a novel trilinear decomposition method, termed three-
way NNMA (TWNNMA), was developed. The method decomposes three-way arrays directly without
unfolding and overcomes the restriction of locking zero elements in the deduced multiplicative update
rules by adding a positive symmetric matrix. Direct trilinear decomposition was used as the TWNNMA
initialization method and experimental results confirm that this greatly accelerated the convergence. An
eywords:
on-negative matrix approximation
econd-order calibration
ARAFAC
inetics

obvious advantage of TWNNMA is the uniqueness of the non-negative solution, which facilitates a better
understanding of the underlying physical realities of complex data. TWNNMA was applied in complex
systems such as chemical kinetics, second-order calibration and analysis of GC–MS data. The results
demonstrate that TWNNMA, differing from previous trilinear decomposition methods, is comparable to
existing second-order calibration methods and represents a promising resolution method for complex

systems.

. Introduction

Owing to the variety of multi-way data produced by modern
nalytical instrumentation and to the development of chemomet-
ics methods, multi-way analysis has been extensively applied
n chemistry in recent years. Multi-way refers to data with two
r more dimensions, which are also called multi-order. In par-
icular, a unique solution can be obtained when decomposing
hree-way arrays under conditions for essential uniqueness such as
ruskal’s permutation lemma, which is attracting increasing inter-
st in chemistry. There is also a property associated with second- or
igher-order sample data (three- or higher-way arrays) called the
econd-order advantage [1]. The applicability and immense poten-
ial of the second-order advantage in analytical chemistry have
ecome an active area of theoretical interest and of intense experi-
ental research [2–7]. However, regardless of the algorithm used,
ulti-way data do not always lead to the second-order advantage

8]. Suitable algorithms for analysis of second-order data are paral-
el factor analysis (PARAFAC) [9], the generalized rank annihilation

ethod (GRAM) [10], direct trilinear decomposition (DTLD) [11],
ltivariate curve resolution coupled to alternating least squares
MCR–ALS) [12], alternating trilinear decomposition (ATLD) [13]
nd its variants self-weighted alternating trilinear decomposition
SWATLD) [14] and alternating penalty trilinear decomposition
APTLD) [15], and bilinear least squares (BLLS) [16], unfolded par-

∗ Corresponding author. Tel.: +86 21 65983987; fax: +86 21 65983987.
E-mail addresses: jiangming.sun@hotmail.com (J. Sun), lith@tongji.edu.cn (T. Li).

039-9140/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.talanta.2010.09.035
© 2010 Elsevier B.V. All rights reserved.

tial least squares(UPLS) [17] and multi-way partial least squares
(N-PLS) [18] coupled to residual bilinearization (RBL) procedure
[19].

Non-negative matrix approximation (NNMA), also known as
non-negative matrix factorization [20], which approximates a
given matrix V of non-negative values using an additive linear com-
bination of two non-negative matrices W and H, is a new method for
analysis of multi-way data. Decomposition is usually achieved by
optimizing cost functions such as the Frobenius norm and Bregman
divergence to measure the divergence between V and the product
of W and H. There are two other widely used NNMA approaches
that use alternating non-negative least squares termed positive
matrix factorization (PMF) [21] and non-negative least squares
(NNLS) [22]. NNMA was popularized by Lee and Seung in a sim-
ple and useful algorithm procedure based on multiplicative update
rules. As often the data to be analyzed is nonnegative, and the low-
rank data are further required to be nonnegative values in order
to avoid contradiction of physical realities. When classical tools
are used, retention of this non-negativity cannot be guaranteed.
The NNMA approach to approximate a given non-negative data
matrix is thus a natural choice. NNMA has been successfully used
in diverse scientific fields, including signal and image processing
[20,23–25], natural language processing applications such as text
mining and document clustering [26–28], information retrieval

[29], computational biology applications [30] such as molecular
pattern discovery [31] and functional characterization of genes
and biomedical informatics [32], and chemistry [33–37]. Recently,
NNMA has been extended to higher-order tensors to yield a model
known as non-negative PARAFAC [38], which has also been investi-
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ated as positive tensor factorization (PTF) [39], nonnegative tensor
actorization (NTF) [40,41] or nonnegative tucker decomposition
NTD) [42].

NNMA has attracted much attention during the past decade
ut it still has three main limitations. First, similar to the rota-
ional ambiguity of factor analysis, decomposition for NNMA is not
nique in general [43]. In other words, a matrix and its inverse
an be used to transform two factorization matrices, for example

H to WDD−1H. If the two new matrices WD and D−1H are non-
egative, they form another parameterization of the factorization.
econd, most methods used for NNMA do not guarantee algorithm
onvergence at a reasonable speed [44]. Third, a serious drawback
f multiplicative update rules is that once an element in W or H
ecomes zero, it must remain zero during iteration. This locking of
ero elements is restrictive, meaning that once the algorithm starts
o head towards a fixed point, even if it is a poor fixed point, the
rocess must continue in the same vein.

To attempt to overcome the non-uniqueness of NNMA, sev-
ral modifications have been proposed. Hoyer showed that explicit
ncorporation of a sparseness constraint improved the final decom-
osition [45]. Alberto imposed a non-smooth constraint to control
he sparseness of both factors, which resulted in better inter-
retability of the factors [24]. Gao et al. improved the NNMA
lgorithm by imposing smoothness, unimodality and sparseness
roperties for chemical spectra to obtain acceptable and reliable
olutions [33]. To speed up NNMA convergence, Gonzalez created
modification by adding step-length parameters to accelerate the

ee and Seung multiplicative update algorithm [46]. Shepherd [47]
eveloped a proposed gradient descent method that can acceler-
te convergence using suitable choices for the step size. Others
ave used an alternative least squares (ALS) algorithm and vari-
nts thereof instead [48]. In these algorithms, a least squares step
s followed by another least squares step in an alternating pro-
ess. There is usually a projection step after each least squares
tep to ensure non-negativity. Depending on the implementation,
LS algorithms for NNMA can be very fast. Moreover, unlike mul-

iplicative algorithms, ALS-based NNMA does not lock elements.
s observed from experimental results, by imposing sparseness,
rthogonality or specific spectral properties, ambiguities in NNMA
esults can be reduced. NNMA convergence speed increases when a
radient descent or ALS is used. However, decomposition for NNMA
s still far from unique. Moreover, a convergence theory to support
he gradient descent approach and ALS is somewhat lacking [49]
nd in some cases ALS does not identify a non-negative solution
hat fits the data well. Finally, no multiplicative update rules-based
lgorithm has resolved the restriction of locking zero elements.

In the present study, a novel method for trilinear decomposition,
ermed three-way NNMA (TWNNMA), was developed. TWNNMA,
ased on the PARAFAC model, involves fitting the model to the least
quares with a non-negative constraint for each dimension. It can
ecompose three-way arrays directly without unfolding or rear-
anging the arrays into a matrix by using the inner product of two
uch arrays. This approach can be used to resolve extreme spectral
verlapping because of the second-order advantage of the method.
o overcome the restriction of locking zero elements in deduced
ultiplicative update rules, a positive symmetric matrix is multi-

lied by each factor to form new multiplicative update rules. By
ltering the parameter in the symmetric matrix, different degree of
moothness can be achieved. When the new multiplicative update
ules are combined with a stopping condition, TWNNMA converges
o a stationary point. Good initialization can improve the speed and

ccuracy of the solutions for many NNMA algorithms, so different
nitialization methods were also investigated. The experimental
esults demonstrate that the residual sum of squares decreased
uch faster for DTLD initialization than for other initializations
ethods, thus accelerating TWNNMA convergence. An obvious
 (2010) 541–548

advantage of the method is the uniqueness of the non-negative
solution, which facilitates a better understanding of the underlying
physical realities of complex data. TWNNMA was applied in com-
plex systems such as chemical reaction kinetics and second-order
calibration. Satisfactorily resolved kinetic concentration profiles
and spectra were obtained. Compared with existing second-order
calibration methods, the TWNNMA resolution results are reason-
ably precise. Thus, TWNNMA is a promising method for analysis of
chemical reaction kinetics. The quantitative determination results
demonstrate that TWNNMA is a novel method that provides the
second-order advantage.

2. Notation

Throughout this paper, scalars are represented by lowercase
italics and vectors by bold lowercase characters. Bold uppercase
letters denote two-way matrices and underlined bold uppercase
letters denote three-way arrays. The letters I, J, K indicate the
dimensions of different modes in three-way arrays. F is the num-
ber of factors used in the decomposition. X represents a three-way
array, and the ijkth element of X is xijk or Xijk. A, B and C with dimen-
sions I×N, J×N and K×N, respectively, are the three factorization
matrices of X.

Outer product of two matrices: a special tensor product is defined
whereby a three-order tensor can be obtained as the outer product
of two matrices with the same column.

Inner product of two three-order tensors: a two-order tensor can
be obtained as the dot product of two three-order tensors. The sym-
bol “••” is used here to represent the inner product, which differs
from the commonly used dot product in mathematics.

Terms and abbreviations are listed in the glossary (see Glossary).

3. Method and algorithm

The CANDECOMP/PARAFAC model, sometimes simply called the
PARAFAC model, essentially searches for a solution to the following
problem: given a tensor X belonging to Rd1×· · ·×dk , find an optimal
rank-F approximation. It can be expressed as:

xijk =
F∑

f=1

aif bjf ckf + eijk, (1)

where three-way array X with elements xijk are given by three load-
ing matrices, A (I× F), B (J× F) and C (K× F) with elements Aif, Bjf,
and Ckf. F is the number of factors. The trilinear model minimizes
the sum of squares of the residual error eijk.

Fitting the PARAFAC model to least squares, the objective func-
tion can be expressed as:

D = ‖X− ABC‖2F . (2)

Being analogous to the Euclidean distance, the residual sum of
squares is used to evaluate the approximation. Its lower bound is 0
and it equals 0 if and only if X = ABC.

Taking the derivative of objective D with respect to A gives:

∂

∂Aia
D = −2X • •BC+ 2ABC • •BC. (3)

According to the gradient algorithm:

Ai˛ ← Ai˛ − ıi˛
∂

D, (4)

∂Aia

Ai˛ ← Ai˛ + ıi˛ (X • •BC− ABC • •BC) . (5)

Note that the coefficient, ıia, which can be called the learning
rate.
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Forcing:

ia =
Aia

(ABC • •BC)ia
, (6)

ives the multiplicative rule:

ia ← Aia
(X • •BC)ia

(ABC • •BC)ia
. (7a)

Similarly,

ja ← Bja

(X • •AC)ja

(ABC • •AC)ja
, (7b)

ka ← Cka
(X • •AB)ka

(ABC • •AB)ka
, (7c)

Note that after each update of A and B, there is a normalization
tep.

.1. Modified multiplicative update rules

The basic and later NNMA multiplicative update rules reported
o not allow any factor element to ever come up from the value of
ero. In the present study, a smoothing matrix S was added to the
bove multiplicative rules. The modified multiplicative rules thus
btained are:

ia ← ASia
(X • •BC)ia

(ABC • •BC)ia + ε
, (8a)

ja ← BSja

(X • •AC)ja

(ABC • •AC)ja + ε
, (8b)

ka ← CSka
(X • •AB)ka

(ABC • •AB)ka + ε
, (8c)

here ε is a pre-defined small positive number in case the denom-
nator is zero. The positive symmetric matrix S∈RN×N is defined
s:

=
(

1− �
)

I+ �

N
11T, (9)

here I is the identity matrix, 1 is a vector of ones, N is the number
f factors and the parameter � satisfies 0≤ � < 1.

The effect of smoothing matrix S can be explained as follows. Let
be a non-negative matrix. Consider the transformed matrix Y = AS.

f � = 0, then Y = A and no smoothing of A has occurred. When � is
pproximately 1, each row of matrix Y tends to the constant vector
ith all elements almost equal to the average of the elements in the

orresponding row of A. If any element in a row of A is non-zero,
hen all elements in the corresponding row of Y would be equal to
he same non-zero value, instead of having some values zero and
thers clearly non-zero. Provided that some elements of the factors
ecome zero after a single iteration, the elements update to non-
ero in the subsequent iteration. Thus, the restriction of locking zero
lements is avoided in the NNMA-modified multiplicative update
ules.

Note that the parameter � controls the degree of smoothness.
hen � = 0, the method corresponds to the basic NNMA multiplica-

ive update rules. The parameter � was defined as a small positive
umber. After running the algorithm, it was noted that adjustment
f � during iteration could speed up convergence.
.2. Algorithm

We developed TWNNMA under the PARAFAC model and used
he residual sum of squares as the objective function. The algorithm
omprises the following steps:
 (2010) 541–548 543

1. Estimate the number of factor for three-way array X.
2. Initialize the factor matrices A, B and C under the non-negativity

constraint (see Section 6).
3. Calculate the reconstructed three-way array ABC.
4. Calculate the new factor matrix A using Eq. (8a) and scale A to

be columnwise normalized.
5. Calculate the new factor matrix B using Eq. (8b) and scale B to

be columnwise normalized.
6. Calculate the new factor matrix C using Eq. (8c).
7. Calculate the residual sum of squares and the KKT residual norm

(see Section 6).
8. Repeat steps 3–7 until the KKT residual norm converges to the

stopping condition.

4. Experimental

4.1. Simulated fluorescence excitation–emission kinetic data sets

Consecutive reactions with a reversible step occur
widely in chemical kinetics and examples include the
Lindemann–Hinshelwood mechanism for unimolecular decay
and the Michaelis–Menten mechanism of enzyme catalysis. We
considered the reaction scheme for the reaction type:

v1A
k1←→

k−1

v2B
k2−→C.

In this case the concentration matrix was generated using rate
constants k1 = 10 min−1, k–1 = 0 s−1 and k2 = 0.7 min−1. The reaction
orders were v1 = 1 and v2 = 1. Pure-component simulated spectra
of A, B and C were chosen to provide a fairly high degree of correla-
tion and low selectivity, giving matrices Ex (30×3) and Em (20×3).
Correlation coefficients between each pair of excitation spectra
were [ex1, ex2] = 0.9612, [ex1, ex3] = 0.9189 and [ex2, ex3] = 0.9374.
Correlation coefficients between each pair of emission spectra were
[em1, em2] = 0.9312, [em1, em3] = 0.9780 and [em2, em3] = 0.9716.
The pure-component simulated spectral data sets were normalized
before coupling with concentration data to generate synthetic data
sets.

TWNNMA was first tested on a synthetic noise-free data set
(D1). Its performance was then investigated for synthetic data sets
D2, D3 and D4 to which random Gaussian noise was added with a
standard deviation of 0.02, 0.05 and 0.10 units of the mean signal,
respectively.

4.2. Simulated data set for second order calibration

The data set published by Olivieri [50] was used as the simulated
data set for second-order calibration. This comprises simulated flu-
orescence excitation–emission matrix data for a set of calibration
and test samples containing two calibrated analytes and a single
interferent. Ten calibration samples with a random design for the
concentrations of both analytes were provided, along with ten test
samples containing the three analytes in random concentrations.
Random Gaussian noise with 0.03 units of standard deviation was
added to all signals. The data set and the programs used in Ref. [50]
are available via www.chemometry.com.

4.3. GC–MS metabolomic experiment data set

Duran et al. [51] placed Medicago truncatula seeds in a controlled

greenhouse environment for 82 days at an average temperature
of 28 ◦C, 40% relative humidity, and a day length of 16 h to study
the impact of photosynthesis to the different M. truncatula tissue
by GC–MS analysis. Analyses were performed on a 60 m DB-5MS
column under Agilent Chemstation (Hewlett Packard 6890 gas
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Table 1
Loss values (the sum of squared errors) relative to the value for a one-factor model, fit values in percentages and core consistencies (CORCO) versus the number of factors in
an unconstrained PARAFAC model of the data sets D1, D2, D3 and D4.

N D1 D2 D3 D4

CORCO Loss CORCOa Loss CORCOa Loss CORCOa Loss

1 100 1.000 100 1.000 100 1.000 100 1.000
2 100 0.319 100 0.327 100 0.348 100 0.431
3 100 4.49×10−6 100 0.008 99.9 0.045 97.2 0.156
4 2.21×10−17 1.62×10−5 85.4 0.008 45.5 0.045 32.7 0.153
5 – 5.80×10−6 64.5 0.008 32.8 0.045 20.2 0.150
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6 – 2.53×10−5 48.8
7 – – 23.8

a Core consistency is not stable when the number of factors is above three. Here

hromatograph, 5973 mass selective detector, and 6890 series
njector). Samples were analyzed by injecting 1 �l with a split injec-
ion ratio of 25:1. Separations were achieved using a temperature
rogram with a mass scanning range of 50–650 m/z. M. truncat-
la roots, stems and leaves from ten replicate plants generated 30
C–MS datasets in total. We rearranged the datasets to a three-
ay array with sample, chromatogram and mass modes and used

he data to validate the TWNNMA method. The data set was down-
oaded from www.noble.org/plantbio/MS/downloads.html.

.4. Software

All calculations were performed in the Octave environment
http://www.octave.org) using a 2.80-GHz Intel (R) Core 2 Quad
9650 computer with Windows Server 2008 R2. The codes for the
TLD and core consistency diagnostic were from the Matlab N-way
oolbox [52]. The code for HOSVD was from TP Tool [53]. Other
alculation codes were written by the authors.

. Results

.1. Kinetics analysis

Kinetics research is widely used to identify chemical reaction
echanisms in complex reaction system such as biochemical reac-

ion networks. Multivariate curve resolution, which is traditionally
sed in kinetics, can be used to describe processes without explicit
se of the underlying chemical model. In the present study, TWN-
MA was used to decompose simulated kinetics directly without
ny information except for the native non-negative property.

TWNNMA requires a certain number of responsive factors in
dvance, so in this case the core consistency diagnostic and the
esiduals of the least squares fit of the three-way arrays were used
o estimate the number of factors. These two parameters stabilize
hen the correct number of factors has been reached (see Sec-

ion 6). Data sets D1, D2, D3 and D4 were analyzed and the results
btained for the core consistency diagnostic and loss function val-
es are listed in Table 1. As shown, the correct number of factors
hould be three for data decomposition using TWNNMA.

Fig. 1 shows profiles of the three factors from data decom-
osition by TWNNMA for different noise levels. Fig. 1A shows
esolved kinetic concentration profiles. Fig. 1B and C shows fac-
ors corresponding to simulated excitation and emission spectra,
espectively. All the kinetic concentration profiles are fairly well
esolved and the corresponding excitation and emission spectra
re almost entirely overlapping. Because severe noise was added
o dataset D4, the concentration profile obtained is slightly worse

han for the other data sets.

Table 2 shows information related to the kinetics application
or different noise levels. TWNNMA shows acceptable fits for data
et D1, D2 and D3. For data set D4, the lack of fit obtained is
lightly worse. Nevertheless, the square of the correlation coeffi-
008 0.2 0.045 9.0 0.150
008 – – – –

RCO is the mean value of 10 runs.

cient between actual and resolved concentrations and excitation
and emission spectra indicates acceptable goodness of fit.

5.2. Quantitative determination

As indicated in Ref. [50], the number of factors was set to three.
A separate component profiles in each dimension was then pro-
duced after TWNNMA decomposition of the three-way data set
comprising calibration and test sample data. Because TWNNMA
decomposition only provides relative values, the analyte concen-
trations in the prediction samples were obtained after calibration
was performed in a procedure similar to a calibration curve for one
component against standard concentrations. Predicted concentra-
tions for both analytes, the root mean square error of prediction,
and figures of merit such as sensitivity, selectivity and limit of
detection [54–56] are listed in Table 3. PARAFAC, ATLD, APTLD,
SWATLD, BLLS/RBL and TWNNMA show similar sensitivity and
selectivity in this particular example. TWNNMA is quite precise
according to the root mean square error of prediction. Moreover,
TWNNMA have a low limit of detection.

5.3. Analysis of GC–MS data

Non-processed MS files from GC–MS analysis were converted
in NetCDF format to Octave. After data preprocessing such as chro-
matogram alignment and baseline correction, retention time from
26.03 min to 26.17 min (Fig. 2A) was selected for study. In contrast
with only phosphoric acid (91.2% match) recognized by searching
in the NIST 2005 mass spectral library directly, two components
eluted successively and were identified as phosphoric acid (NIST
05, 92.7% match) and glycerol (NIST 05, 91.8% match) respectively
when TWNNMA was used (Fig. 2B and C). Fig. 2D demonstrates the
perceptible change of relative concentration of two components in
M. truncatula roots, stems and leaves. The change trends also reflect
the influence of photosynthesis to different M. truncatula tissue.

6. Discussion

6.1. Determining the number of factors

There are three main ways to determine the correct number of
factors in a PARAFAC model: (1) split-half analysis, (2) judging of
residuals, and (3) comparison with external knowledge of the data
being modeled. Among these techniques, the core consistency diag-
nostic [57], which reflects the resemblance between Tucker3 core
fits and the super-diagonal PARAFAC core and suggests whether a
PARAFAC model is a valid model for a three-way array, has been

commonly applied in estimating the number of factors [4–7].

The core consistency diagnostic is an effective tool for deter-
mining the appropriate number of factors in a PARAFAC model.
However, it has been shown using purely synthetic data that the
core consistency diagnostic is not yet complete [50]. The residu-



J. Sun et al. / Talanta 83 (2010) 541–548 545

(A) (B)

(C)

F recov
a

a
i
n
c
r
a
w
a

6

M
s

T
L

ig. 1. Kinetic profiles (A) and fluorescence excitation (B) and emission (C) spectra
nd D4 (dash dot dot line). Solid lines are the true profiles.

ls for least squares fits of three-way arrays to the trilinear model
s another important parameter that stabilizes when the correct
umber of factors has been reached. In the present study, the core
onsistency diagnostic did not always allow selection of the cor-
ect number of factors, but analysis of the residual fit led to an
ppropriate number of factors in the two applications. Therefore,
e suggest that analysis of the residual fit should be used as an

lternative approach to the core consistency diagnostic.
.2. Initialization

NNMA algorithms are sensitive to the initialization procedure.
ost algorithms use simple random initialization. Wild et al.

howed that a centroid initialization built from centroid decom-

able 2
ack of fit and the square of the correlation coefficient between actual and resolved profi

Data set Noise levela %Lack of fitb Concentration

1 2 3

D1 0 0.33 1.000 1.000 1.000
D2 0.02 1.28 1.000 1.000 1.000
D3 0.05 3.15 0.999 0.999 0.999
D4 0.10 6.18 0.998 0.999 0.999

a Random Gaussian noise was added to data sets D2, D3, D4 with a standard deviation

b Lack of fit (%) = 100×
√∑

i,j,k
r2

ijk
/
∑

i,j,k
d2

ijk
where rijk are residuals and dijk are t
ered for simulated kinetics data set D1 (dash line), D2 (dot line), D3 (dash dot line)

position was a much better alternative to random initialization
[58]. Langville recommended the use of results from a fast ALS-type
NNMA algorithm for initialization [48]. In all cases, good initializa-
tion can improve the convergence speed and solution accuracy of
many NNMA algorithms. Moreover, good initialization can avoid
some convergence problems.

In the present study, several initialization methods were pro-
posed. Besides random initialization, HOSVD initialization and
DTLD initialization were investigated. To ensure non-negativity,

absolute values of the loading vectors obtained from HOSVD
and DTLD were used as starting values in TWNNMA. As
observed from Fig. 3, HOSVD initialization converged faster
than random initialization and the residual sum of squares
and KKT residual norm (see Section 6.3) for DTLD initializa-

les for the analytes (indicated as 1, 2 and 3) using TWNNMA.

Emission spectra Excitation spectra

1 2 3 1 2 3

1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 0.998 1.000

of 0.02, 0.05 and 0.10 units of the mean signal, respectively.

he elements of the raw three-way data set.
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Fig. 2. (A) The total ion chromatogram of Medicago truncatula roots, stems and leaves (retention time from 26.02 min to 26.17 min) and TWNNMA results: (B) chromatographic
loadings; (C) mass-spectrum loading (derivatives); and, (D) concentration loading for leaves (sample nos. 1–10), roots (sample nos. 11–20) and stems (sample nos. 21–30).
Note that the color black and green refer to component 1 and component 2 respectively. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of the article.)

(A) (B)

Fig. 3. Convergence graph comparing different initialization methods for data set D2. The solid line, dot line and dash line denote the change of SSQ (A) and KKT norm (B)
with the initialization of DTLD, HOSVD and random, respectively.
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Table 3
Results for TWNNMA and existing second-order calibration methods.

Test sample Nominala PARAFACa ATLDa APTLDa SWATLDa BLLS/RBLa U-PLS/RBLa N-PLS/RBLa TWNNMA

Analyte 1
1 2.95 2.97 2.91 2.95 2.95 2.94 2.94 2.96 2.96
2 3.05 3.07 3.08 3.09 3.09 3.06 3.06 3.09 3.05
3 1.04 1.05 1.12 1.05 1.05 1.06 1.06 1.07 1.04
4 2.39 2.41 2.52 2.42 2.42 2.37 2.36 2.40 2.40
5 2.39 2.46 2.40 2.46 2.46 2.44 2.45 2.46 2.44
6 2.34 2.36 2.47 2.37 2.37 2.39 2.39 2.41 2.35
7 2.77 2.81 2.72 2.79 2.79 2.75 2.75 2.75 2.79
8 1.15 1.20 1.14 1.22 1.22 1.19 1.19 1.21 1.18
9 2.34 2.35 2.52 2.39 2.39 2.38 2.38 2.40 2.34
10 3.46 3.47 3.40 3.44 3.44 3.41 3.41 3.43 3.46

RMSEPb 0.03 0.09 0.04 0.04 0.03 0.04 0.05 0.02
SENc 0.68 0.68 0.68 0.68 0.68 0.68 – 0.68
SELd 0.20 0.20 0.20 0.20 0.19 – – 0.20
LODe 0.20 0.42 0.21 0.21 0.15 0.15 – 0.09
Analyte 2

1 2.99 3.03 3.24 2.97 2.97 3.06 3.00 3.04 2.98
2 3.66 3.75 3.90 3.69 3.69 3.87 3.70 3.86 3.69
3 1.43 1.51 1.36 1.45 1.45 1.52 1.45 1.51 1.48
4 3.60 3.72 3.33 3.64 3.64 3.62 3.46 3.62 3.68
5 1.76 1.86 1.91 1.78 1.78 1.77 1.78 1.77 1.80
6 3.64 3.68 3.57 3.67 3.67 3.70 3.58 3.68 3.66
7 1.35 1.45 1.28 1.38 1.38 1.32 1.35 1.29 1.39
8 2.19 2.27 2.48 2.29 2.29 2.35 2.28 2.35 2.22
9 2.57 2.63 2.28 2.56 2.56 2.60 2.53 2.59 2.59
10 3.30 3.37 3.22 3.32 3.32 3.17 3.14 3.15 3.33

RMSEPb 0.08 0.20 0.04 0.04 0.10 0.08 0.10 0.04
SENc 0.27 0.26 0.27 0.27 0.28 0.28 – 0.27
SELd 0.17 0.18 0.17 0.17 0.18 – – 0.21
LODe 0.51 1.10 0.54 0.54 0.40 0.40 – 0.20

a The results for PARAFAC, ATLD, APTLD, SWATLD, BLLS/RBL, U-PLS/RBL, N-PLS/RBL were obtained by Olivieri et al. [50].
b The root mean square errors of prediction is determined as: RMSEP =

[∑
(yi − �yi)

2/N
]1/2

, where N is the sample size, yi and �yi are the actual and predicted concentrations

respectively.

c The sensitivity (SEN) is determined as: SENn = kn

{[
(BT

susPb,unsBsus)× (CT
susPc,unsCsus)

]−1
}−1/2

.

/n− 2

t
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t
r
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d The selectivity (SEL) is obtained by dividing SEN by kn .

e Limit of detection (LOD) was calculated as: LOD = ı
(

˛, ˇ
)
×
[√∑

(Ci −
�
Ci)

2

ion decreased much faster than for the other two initializations
ethods.
Random initialization is simple to implement but DTLD ini-

ialization can greatly speed up TWNNMA convergence. Thus, we
ecommend DTLD for TWNNMA initialization.

.3. Stopping condition

Several implementations of the NNMA multiplicative update
ules use a maximum number of iterations as the stopping criterion.
owever, setting of a fixed number is not a mathematical method

or controlling the number of iterations executed because the most
ppropriate value for maximum iteration is problem-dependent.
ome researchers checked the difference between recent iterations.
f the difference is small enough, then the procedure stops. How-
ver, such stopping conditions do not reveal whether a solution is
lose to a stationary point or not. Langville et al. [48] proposed an
ngular convergence measure. Once an angle is less than a certain
hreshold, the algorithm stops because the factors have converged
atisfactorily. Lin [49] proposed a stopping condition that simulta-
eously checks for stationarity at each iteration, and fits nicely into

is projected gradient algorithm. Moreover, Lin proved that NNMA
ultiplicative update rules converge to a stationary point [59].
Here we extend the Lin stopping condition to TWNNMA under

he Karush–Kuhn–Tucker (KKT) optimality condition [60]. Thus, the
atrices Ak + 1, Bk + 1 and Ck + 1 resulting from the iterative proce-
nn

/k

]
×
√

1+ 1/n+ x̄2/
∑

(xi − x̄)2.

dures should satisfy:

‖∇Af (Ak+1, Bk, Ck)‖F ≤ εA, (10a)

‖∇Bf (Ak+1, Bk+1, Ck)‖F ≤ εB, (10b)

‖∇C f (Ak+1, Bk+1, Ck+1)‖F ≤ εC, (10c)

where ∇f (A, B, C) is defined as:

∇Af (A, B, C) = (X • •BC− ABC • •BC) , (11a)

∇Bf (A, B, C) = (X • •AC− ABC • •AC) , (11b)

∇C f (A, B, C) = (X • •AB− ABC • •AB) . (11c)

We set

εA = εB = εC =max(10−3, ε)‖∇f
(

A1, B1, C1
)
‖F , (12)

at the start, where ε is the tolerance. For ease of expression, we
define the KKT residual norm as the sum of the left-hand-side of
Eqs. (10a)–(10c).
If the KKT residual norm is not greater than the right-hand-side
of Eq. (12), then the iterative procedure for TWNNMA stops. We set
tolerance 10−3 in the three cases of present study. Implement of
TWNNMA showed that KKT residual norm achieved stop condition
after a few iterations (<100).
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. Conclusion

A novel trilinear decomposition method, TWNNMA, was pro-
osed. The method resolves the main drawbacks of most algorithms
sed for NNMA. Three applications in chemical kinetics, second-
rder calibration and analysis of GC–MS data demonstrated that
WNNMA would be a promising resolution method for complex
ystems. Determination of the correct number of factors for three-
ay arrays was also investigated. The results suggest that analysis

f the residual fit can be used as an alternative approach to the
ore consistency diagnostic. DTLD initialization can speed up the
onvergence of TWNNMA greatly. We also propose a stopping con-
ition that reveals whether the TWNNMA solution is close to a
tationary point or not. TWNNMA, which decomposes three-way
rrays directly without unfolding, provides a new decomposition
ethod for three-way arrays. This decomposition technique will

ontribute to the development of resolution methods for three-way
rrays.

cknowledgements

The authors would like to acknowledge financial supports by
he National Natural Science Foundation of China (20675057 and
0705024).

eferences

[1] K.S. Booksh, B.R. Kowalski, Anal. Chem. 66 (1994) 782–791.
[2] A.C. Olivieri, Anal. Chem. 80 (2008) 5713–5720.
[3] M.M. Sena, M.G. Trevisan, R.J. Poppi, Talanta 68 (2006) 1707–1712.
[4] R.S. Valverde, M.D.G. Garcia, M.M. Galera, H.C. Goicoechea, Talanta 70 (2006)

774–783.
[5] D.B. Gil, A.M. de la Peña, J.A. Arancibia, G.M. Escandar, A.C. Olivieri, Anal. Chem.

78 (2006) 8051–8058.
[6] S.H. Zhu, H.L. Wu, A.L. Xia, Q.J. Han, Y. Zhang, R.Q. Yu, Talanta 74 (2008)

1579–1585.
[7] B. Hemmateenejad, Z. Rezaei, S. Zaeri, Talanta 79 (2009) 648–656.
[8] G.M. Escandar, N.M. Faber, H.C. Goicoechea, A. Muñoz de la Peña, A.C. Olivieri,
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Glossary

ALS: alternating least squares.
APTLD: alternating penalty trilinear decomposition.
ATLD: alternating trilinear decomposition.
BLLS: bilinear least squares.
CANDECOMP: canonical decomposition.
CORCO: core consistencies.
DTLD: direct trilinear decomposition.
GRAM: generalized rank annihilation.
HOSVD: higher order singular value decomposition.
KKT: Karush–Kuhn–Tucker.
LOD: limit of detection.
MCR–ALS: multivariate curve resolution coupled to alternating least squares.
N-PLS: multi-way partial least squares.
NNLS: non-negative least squares.
NNMA: non-negative matrix approximation.
NTF: non-negative tensor factorization.
NTD: non-negative tucker decomposition.
PARAFAC: parallel factor analysis.
PMF: positive matrix factorization.
PTF: positive tensor factorization.
RBL: residual bilinearization.
RMSEP: root mean square errors of prediction.
SWATLD: self-weighted alternating trilinear decomposition.
SEL: selectivity.

SEN: sensitivity.
SSQ: the residual sum of squares.
TWNNMA: three-way non-negative matrix approximation.
UPLS: unfolded-partial least squares.


